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Sequences

Rosen 6" ed., §2.4
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82.4: Sequences, Strings, &
Summations

* A or IS just like an
ordered n-tuple, except:

— Each element in the series has an
associated index number.

— A sequence or series may be infinite.

* A Is a sequence of from
some finite

* A IS a compact notation for
the sum of all terms in a (possibly infinite)
series.
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Sequences

A or {an{} is identified with a
generating function f: S — A for some subset ScN and for
some set A.
— Often we have S =N or S=Z*= N —{0}.
— Sequences may also be generalized to indexed sets, in which the set
S does not have to be a subset of N.
« For general indexed sets, S may not even be a set of numbers at all.

If f is a generating function for a series {a,}, then for
neS, the symbol a, denotes f(n), also called term n of the
sequence.

— The index of a, is n. (Or, often i is used.)

» A series is sometimes denoted by listing its first and/or last
few elements, and using ellipsis (...) notation.
- Eg.,“a,}=0,1,4,9, 16, 25, ..." is taken to mean

— Vne N, a, = (n-1)2 it is an infinite sequence
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Sequence Examples

* Some authors write “the sequence (i.e.,
series) a,, a,, ...” instead of {a,}, to ensure
that the set of indices is clear.

— Be careful: Our book often leaves the indices
ambiguous.
An example of an infinite series:
— Consider the series {a,} = a,, a,, ..., where
(Vn=1) a,= f(n) = 1/n.
—Then, we have {a,} =1, 1/2, 1/3, ...
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Example with Repetitions

* Like tuples, but unlike sets, a sequence
may contain repeated instances of an
element.

» Consider the sequence {b} = by, b, ...
(note that O is an index) where b, = (-1)".
—Thus, {b,}=1,-1,1,-1, ...

* Note repetitions!

— This {b,} denotes an infinite sequence of 1's
and -1's, not the 2-element set {1, —1}.
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Recognizing Sequences

* Sometimes, you're given the first few terms of
a sequence,

—and you are asked to find the sequence’s
generating function,

—0ra procedure to enumerate the sequence.
» Examples: What's the next number?

—-1,2,3/4,... 5 (the 5th smallest number >0)
-1,3,5,7,9,... 11 (the 6th smallest odd number >0)
-2,35,7,11,... 13 (the 6th smallest prime number)
~ 03815, .. 24(fm= n-1)
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The Trouble with Sequence Recognition

» As you know, these problems are popular on IQ tests, but...

e The problem of finding “the” generating function given just
an initial subsequence is not a mathematically well
defined, i.e., posed, problem.

— This is because there are infinitely many computable functions that
will generate any given initial subsequence.

» We implicitly are supposed to find the simplest such function
(because this one is assumed to be most likely), but,

— how are we to objectively define the simplicity of a function?

* We might define simplicity as the reciprocal of complexity,
but...

— There are many different plausible, competing definitions of
complexity, and this is an active research area.

* So, these questions really have no objective right answer!

— Sitill, we will ask you to answer them anyway... (Because others will
too.)
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Example of lll-Posedness of a
Seguence Recognition

— 0,3,8,15, ...is a series
— Solution 1 24 (fny= M—=1 )

s
— Solution 2 f(n)=Y wsin(i*n), w=[5.94, -37.71, -77.37, -53.13]
i=1

4 N
_ Solution 3 f(n)=> we™, w=[-038,0.16,-0.01, 0.0001]
i=1

— In fact instead of sin
and exp we can use

any other function

09/02/2016 9/34

What are Strings, Really?

» This book says “finite sequences of the form
a,, a,, ..., a, are called strings”,
— but infinite strings are also discussed sometimes.
 Strings are normally restricted to sequences
composed of symbols drawn from a finite alphabet,
and are often indexed from 0 or 1.
— But these are really arbitrary restrictions also.
 Either way, the length of a (finite) string is just its
number of terms (or of distinct indices).
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Strings, more formally

Let = be a finite set of ,i.e. an

A s over alphabet > is any sequence {s;}
of symbols, s,e%, normally indexed by N or
N—{0}.

If a, b, c, ... are symbols, the string s = a, b,
C, ... can also be written abc...(i.e., without commas).
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Strings, more formally

If s is a finite string and t is any string, then the
of s with t, written just st,

* is simply the string consisting of the symbols
in s, in sequence, followed by the symbols in
t, in sequence.
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More Common String Notations

The of a finite string s is its number of
positions (i.e., its number of index values i).

If s is a finite string and neN,
then s" denotes the concatenation of n copies of s.
s = ab, s* = abababab

* ¢ or " denotes the empty string, the string of length O.
This is fairly common, but the book uses A instead.
If ¥ is an alphabet and neN,
¥n = {s | sis a string over X of length n}, and
> ={s | s is a finite string over Z}.
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Example

* Y is English alphabet and n = 3eN
Zﬂ — {n abC"," abd n’n de n’. .. ’u XyZ u}

Z* _ {"a"," bcn,uabden’nabepr",. . ."' Xyz "}
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CMSC 302
Summations

Summation Notation

Given a series {a,},

an integer (or limit) j>0, and
an integer k>j,
then the of {a,} fromjtokis

written and defined as follows:
k
D a=a;+a, +..+3
i=j

Here, i is called the of summation.
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Generalized Summations

For an infinite series, we may write:

Ya=a+a, +..
=]

* To sum a function over all members of a
set X={xy, X,, ...}

D)= fF(x)+ FX)+...

xeX
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Simple Summation Example

4
Y (P +1) =2 +D)+(F +1)+(4 +1)
i=2

=@+D)+O+DH+{16+1)

=5+10+17

=32

More Summation Examples

e An infinite series with a finite sum:

D27 =242 =1+t d4 =2
i=0
» Using a predicate to define a set of
elements to sum over:

X*=2"+3+5+7"=4+9+25+49 =87

(X is prime) A X<10

Note, thisis a set {2 35 7}
09/02/2016
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Summation Manipulations

» Some handy identities for summations:

(Distributive law)

Sef(x)=cd f(x)
Z(f(X)+g(X))=Z f(x)+29(x) (An application

of commutativity)

k k+n
f(i)= z f@i—n) (Index shifting)

j i=j+n
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More Summation Manipulations

e Other identities that are sometimes useful:

f(i)= [Zf(l)}LZf(l) ifj<m<k

i=m+1 (Series splitting)

(Order reversal)

14 2
||

(fQi)+ fQi+1))- f(2k+1) (Grouping)

Iy
S
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Example: Impress Your Friends

* Boast, “I'm so smart; give me any 2-digit
number n, and I'll add all the numbers
from 1 to n in my head in just a few
seconds.”

- i.e., Evaluate the summation: ZI
i=1

» There is a simple closed-form formula for
the result, discovered by Euler at age 12!
— And frequently rediscovered by many...

Leonhard
Euler
(1707-1783)
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Euler’s Trick, lllustrated

e Consider the su

@2 D+ +GDE

* We have n/2 pairs of elements, each pair
summing to n+1, for a total of (n/2)(n+1),
or n(n+1)/2 N
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Symbollc Derivation of Trick

FOF case where nis even.. |

k 3 = (k+1
0 Z ( -(k +1))
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Concluding Euler’s Derivation

=

-3 S-Sy
T
=n(n+1)/2

* So, you only have to do 1 easy multiplication in
your head, then cut in half.

» Also works for odd n (prove this at home).
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Geometric Progression

A is a series of
the form a, ar, ar?, ar®, ..., ark, where
a,rekR.

* The sum of such a Eeries is given by:
S=>ar
i=0

* We can reduce this to closed form via
clever manipulation of summations...
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Geometric Sum Derivation

 Here
A NN
we s=>ar'
go.. i=0 : PP N
o —rSar > Sar S - ifb
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Geometric Sum Derivation ...
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Geometric Sum Derivation ...

rS=S+a(r™ -1
rS—-S=a(r" -1
S(r=l=a(r"" -1

n+l
Sza(r llJ whenr =1
r_

Whenr=1,S :Zn:ar‘ :Zn:ali :Zn:a-lz(nﬂ)a
i=0 i=0 i=0
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Nested Summations

» These have the meaning you’'d expect.

J Z[ZJJ z i(1+2+3)

i i=1

=6(1+2+3+4)

* Note issues of free vs. bound variables,

just like in quantified expressions,
integrals, etc.
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Some Shortcut Expressions

Zn: =a(r"™ =D /Ar-1),r=1 Geometric series
Zn: k=n(n+1)/2 Euler’s trick
k=1

i k*=n(n+1)2n+1)/6 Quadratic series
k=1
Zn: =n*(n+1)*/4 Cubic series

=~
LN
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Using the Shortcuts

100

« Example: Evaluate > K’
k=50
— Use series splitting. ,,,

100
— Solve for desired zkz (Zk j+2k2

summation. k=50
100
— Apply quadratic zkz (Zk j zkz
series rule. k=50 k=1
— Evaluate. _100-101-201 49-50-99

6 6

=338,350-40,425
=297,925.
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Summations: Conclusion References

* You need to know: * Rosen
— How to read, write & evaluate summation Discrete Mathematics and its Applications,
expressions like: 6" ed., Mc GrawHill, 2007
k ©
Ya xa 2fo Y X
i=j i=j Xxe X P(x)

— Summation manipulation laws we covered.

— Shortcut closed-form formulas,
& how to use them.
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