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§2.4: Sequences, Strings, & 
Summations

• A sequence or series is just like an 
ordered n-tuple, except:
– Each element in the series has an 

associated index number.
– A sequence or series may be infinite.

• A string is a sequence of symbols from 
some finite alphabet.

• A summation is a compact notation for 
the sum of all terms in a (possibly infinite) 
series.
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Sequences
• Def. A sequence or series {an} is identified with a 

generating function f: S  A for some subset Sℕ and for 
some set A.
– Often we have S = ℕ or S=ℤ+= ℕ {0}.
– Sequences may also be generalized to indexed sets, in which the set 

S does not have to be a subset of ℕ.  
• For general indexed sets, S may not even be a set of numbers at all.

• Def. If f is a generating function for a series {an}, then for 
nS, the symbol an denotes f(n), also called term n of the 
sequence.
– The index of an is n.  (Or, often i is used.)

• A series is sometimes denoted by listing its first and/or last 
few elements, and using ellipsis (…) notation.
– E.g., “{an} = 0, 1, 4, 9, 16, 25, …” is taken to mean

– n ℕ+, an = (n-1)2. it is an infinite sequence
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Sequence Examples

• Some authors write “the sequence (i.e., 
series) a1, a2, …” instead of {an}, to ensure 
that the set of indices is clear.  
– Be careful:  Our book often leaves the indices 

ambiguous.
• Ex. An example of an infinite series:

– Consider the series {an} = a1, a2, …, where 
(n1) an= f(n) = 1/n.

– Then, we have {an} = 1, 1/2, 1/3, …
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Example with Repetitions

• Like tuples, but unlike sets, a sequence 
may contain repeated instances of an 
element.

• Consider the sequence {bn} = b0, b1, …
(note that 0 is an index) where bn = (1)n.
– Thus, {bn} = 1, 1, 1, 1, …

• Note repetitions! 
– This {bn} denotes an infinite sequence of 1’s 

and 1’s, not the 2-element set {1, 1}.
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Recognizing Sequences
• Sometimes, you’re given the first few terms of 

a sequence, 
– and you are asked to find the sequence’s 

generating function, 
– or a procedure to enumerate the sequence.

• Examples: What’s the next number?
– 1,2,3,4,…
– 1,3,5,7,9,…
– 2,3,5,7,11,...
– 0,3,8,15, …

5 (the 5th smallest number >0)
11 (the 6th smallest odd number >0)

13 (the 6th smallest prime number)

24 ( f ( n ) =                      )2 1n 
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The Trouble with Sequence Recognition
• As you know, these problems are popular on IQ tests, but…
• The problem of finding “the” generating function given just 

an initial subsequence is not a mathematically well 
defined, i.e., posed, problem.
– This is because there are infinitely many computable functions that 

will generate any given initial subsequence.
• We implicitly are supposed to find the simplest such function 

(because this one is assumed to be most likely), but, 
– how are we to objectively define the simplicity of a function?

• We might define simplicity as the reciprocal of complexity, 
but…
– There are many different plausible, competing definitions of 

complexity, and this is an active research area.
• So, these questions really have no objective right answer!

– Still, we will ask you to answer them anyway… (Because others will 
too.)
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Example of Ill-Posedness of a 
Sequence Recognition

– 0,3,8,15, …is a series

– Solution 1

– Solution 2

– Solution 3

– In fact instead of sin
and exp we can use 
any other function  

 
4

1

( ) sin( * ), 5.94,   -37.71,   -77.37,   -53.13i
i
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24 ( f ( n ) =                      )2 1n 
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i
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What are Strings, Really?

• This book says “finite sequences of the form 
a1, a2, …, an are called strings”, 
– but infinite strings are also discussed sometimes.

• Strings are normally restricted to sequences 
composed of symbols drawn from a finite alphabet, 
and are often indexed from 0 or 1.
– But these are really arbitrary restrictions also.

• Either way, the length of a (finite) string is just its 
number of terms (or of distinct indices).
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Strings, more formally
• Def. Let  be a finite set of symbols, i.e. an alphabet.

A string s over alphabet  is any sequence {si}
of symbols, si, normally indexed by ℕ or 
ℕ{0}.

• Notation. If a, b, c, … are symbols, the string s = a, b, 
c, … can also be written abc…(i.e., without commas).
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Strings, more formally

• Def. If s is a finite string and t is any string, then the 
concatenation of s with t, written just st,

• is simply the string consisting of the symbols 
in s, in sequence, followed by the symbols in 
t, in sequence.



4

09/02/2016 13/34

More Common String Notations
• Def. The length |s| of a finite string s is its number of

positions (i.e., its number of index values i).
• Def. If s is a finite string and nℕ,

then sn denotes the concatenation of n copies of s.
s = ab, s4 = abababab

•  or “” denotes the empty string, the string of length 0. 
This is fairly common, but the book uses λ instead.

• Def. If  is an alphabet and nℕ,
n : {s | s is a string over  of length n}, and
* : {s | s is a finite string over }.
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Example

•  is English alphabet and n = 3ℕ
n

*

 " ", '' "," ", ," "abc abd xds xyz 

 " "," ", '' "," ", ," "a bc abde abepr xyz 
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Summation Notation

• Def. Given a series {an}, 
an integer lower bound (or limit) j0, and 
an integer upper bound kj, 
then the summation of {an} from j to k is 
written and defined as follows:

Here, i is called the index of summation.

kjj

k

ji
i aaaa  


 ...: 1
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Generalized Summations
• Notation. 

For an infinite series, we may write:

• To sum a function over all members of a 
set X={x1, x2, …}:

...)()(:)( 21 


xfxfxf
Xx

...: 1  




 jj

ji
i aaa
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Simple Summation Example

•

 
4

2 2 2 2

2

1 (2 1) (3 1) (4 1)

(4 1) (9 1) (16 1)
5 10 17
32

i

i


      

     
  



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More Summation Examples

• An infinite series with a finite sum:

• Using a predicate to define a set of 
elements to sum over:

2 2 2 2 2

(  is prime) 10

2 3 5 7 4 9 25 49 87
x x

x
 

        

2...1...222 4
1

2
110

0
 






i

i

Note, this is a set {2 3 5 7}
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Summation Manipulations

• Some handy identities for summations:

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

x x

x x x
k k n

i j i j n

cf x c f x

f x g x f x g x

f i f i n


  



  

 

 

  

 

(Distributive law)

(An application
of commutativity)

(Index shifting)
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More Summation Manipulations

• Other identities that are sometimes useful:

 

1

0 0
2

0 0

( ) ( ) ( )    if 

( ) ( )

( ) (2 ) (2 1) (2 1)

k m k

i j i j i m

k k

i i
k k

i i

f i f i f i j m k

f i f k i

f i f i f i f k

   

 

 

 
    
 

 

    

  

 

  (Grouping)

(Order reversal)

(Series splitting)
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Example: Impress Your Friends
• Boast, “I’m so smart; give me any 2-digit 

number n, and I’ll add all the numbers 
from 1 to n in my head in just a few 
seconds.”

• i.e., Evaluate the summation:

• There is a simple closed-form formula for 
the result, discovered by Euler at age 12!
– And frequently rediscovered by many…




n

i

i
1

Leonhard
Euler

(1707-1783)
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Euler’s Trick, Illustrated

• Consider the sum:
1+2+…+(n/2)+((n/2)+1)+…+(n-1)+n

• We have n/2 pairs of elements, each pair 
summing to n+1, for a total of (n/2)(n+1), 
or  n(n+1) / 2 !!!

…

n+1
n+1

n+1
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Symbolic Derivation of Trick
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For case where n is even…
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Concluding Euler’s Derivation

• So, you only have to do 1 easy multiplication in 
your head, then cut in half.

• Also works for odd n (prove this at home).
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Geometric Progression

• Def. A geometric progression is a series of 
the form a, ar, ar2, ar3, …, ark, where 
a,rℝ.

• The sum of such a series is given by:

• We can reduce this to closed form via 
clever manipulation of summations... 





k

i

iarS
0

09/02/2016 27/34

• Here
we
go...

Geometric Sum Derivation
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Geometric Sum Derivation ...

•
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Geometric Sum Derivation ...

•
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Nested Summations

• These have the meaning you’d expect.

• Note issues of free vs. bound variables, 
just like in quantified expressions, 
integrals, etc.
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Some Shortcut Expressions

•
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Geometric series

Euler’s trick

Quadratic series

Cubic series
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Using the Shortcuts

• Example: Evaluate            .
– Use series splitting.
– Solve for desired

summation.
– Apply quadratic

series rule.
– Evaluate.
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Summations: Conclusion

• You need to know:
– How to read, write & evaluate summation 

expressions like:

– Summation manipulation laws we covered.
– Shortcut closed-form formulas, 

& how to use them.
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